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Executive Summary 
Due to constantly changing demands on today's systems, using component-based 

software systems is a popular development strategy for large applications. Legacy and 
stovepipe systems, commercial-off-the-shelf (COTS) products, and other third-party 
software created independently to interact with one another, are now being forced to 
work together reliably and securely as components of a System of Systems (SoS). When 
components become part of a SoS, individual component security is not enough to 
guarantee that the whole system is secure. 

Software security certification must show compliance with a range of documented 
requirements associated with different security policies and targeted to certain computing 
and interface properties. The focus of this research is on investigating and reformulating 
those security certification criteria that impact SoS. Specifically, we are concerned with 
inter-component interaction behaviors that are governed by their individual security 
policies, as well and their communication style to exchange data and control information. 
The goal is to investigate modeling approaches so that the security policies within and 
across the SoS architecture could be expressed in such a way that compliance with 
certification criteria could be assessed. 

The major challenges are 
• Understanding   policy   attributes   and   mechanisms   with   respect   to 

compliance 
• Interleaving component communication styles and policy governance 
• Devising common properties across different policy types 
• Expressing security certification criteria within a comparative framework 

of the policies 
• Verifying compliance based on both safety and progress properties 
• Understanding the impacts of policies are internal component processing, 

component interfaces, and global SoS architecture 

This report describes the culmination of our research to address the above areas. 
We partition the discussion into three dimensions of software security certification. We 
present the Security Certification Modeling (SCM) framework, a modeling profile that is 
based on a component's security policies, communication strategies, and placement in an 
SoS architecture. Security certification criteria based on audit requirements are used to 
show how local comparators are expressed to find policy violations among interacting 
components in the SoS. We overview our research effort toward increasing the formal 
representation of policy attributes at the global SoS level. We extend an existing formal 
specification language to create X-UNITY to express the SoS hierarchy, communication 
infrastructure, and component policies that affect SoS security requirements. X-UNITY 
allows for temporally based certification criteria to be formulated for compliance 
verification across the SoS components. Finally, we report on our early investigation into 
specific access control representations to understand how the SCM can be more detailed 
to express internal processing of security policy functions, such as access control. From 
this research, a unique Petri Net, called ConPN, has been developed to analyze violations 
of Role-Based Access Control policies of interacting components. 
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1. Security Certification Modeling Framework 
The Security Certification Modeling (SCM) framework focuses on a subset of 

available security policy types relevant to SoS. Emphasis is placed on policy properties 
for which communication and interaction is predictable and observable. This emphasis is 
derived from the need for the SoS to describe the mechanisms that implement expressed 
security policies via the attributes and functionality that relate specifically to interaction. 
Similarly, our policy investigation examines certification criteria that have a direct 
relevance to SoS exposed interfaces and services. 

Security policies for SoSs rely on an communication-centric approach that 
maintains the integrity of system components, protects the confidentiality of information, 
and provides continued availability to systems [1, 2]. We derive the set of policy types 
from industry standards including the Department of Defense Goal Security Architecture 
(DGSA) [3], the Common Criteria [4], Carnegie Mellon University's Computer 
Emergency Response Team (CERT) [2], the Federal Information Processing Standards 
(FIPS) minimum security requirements [5], and the NIST 800 series of publications [6]. 
An empirical study of these documents reveals significant corroboration of the policy 
types across the documents. The DGSA defines seven core policy types [3]. The 
Common Criteria contains eleven functional classes for security policies [4]. NIST 
isolates security requirements across seventeen different categories [5]. 

Overlap exists in the policy designations. For instance, the DGSA policy type of 
availability [3] is closely related to the FIPS document definition of contingency planning 
[5] and the Common Criteria's resource utilization [4]. Selecting the appropriate 
consolidation of properties is required to express important policies with the details 
needed for analysis. From empirical analysis, we delineate features, properties, and intent 
across a uniform granularity to obtain a minimal set of core policy types for our focus. 
The result is six policy types and their relevant properties governing SoS interaction for 
preserving system integrity, confidentiality, and availability. The specific subset of policy 
types are: audit, authentication, authorization, contingency planning, data protection, 
and non-repudiation. Our SCM framework is designed to accommodate statements from 
each of these policy types for SoS component specification and interaction. We target the 
policy properties of interest to a SoS for each policy type below. 

Audit is concerned with recording or logging specific events that occur within or 
between components of a SoS. Policy statements of interest express constraints on the 
type of information to be recorded, the logging frequency, and how the information is 
handled or aggregated [2, 4, 7]. Mechanisms associated with auditing focus on the 
creation of audit records and the manipulation of log files [2, 8]. Policy requirements can 
stipulate that audit records of specific levels of importance (normal, alert, catastrophic, 
etc.) require the transmission of messages (e-mail, log files, etc.) to administrative 
personnel or automated toolkits [9]. 

Component authentication policies concern the type and configuration of the 
authentication checking mechanisms for SoS components. Common authentication 
mechanisms that are used to verify component identity are password-based or certificate- 
based. Constraints may be placed on length, complexity, and validity periods [2, 4, 9]. 
Authentication policies have policy statements related to a Boolean response of 
authentication (allow, deny) [4]. Authentication may allow single login or interactive 
access for multiple logins  [10]. Common policies restrict authentication based on 



component location, express requirements over re-authentication after periods of 
inactivity, and restrict the number of failed login attempts that are permitted by the 
system [2]. 

Authorization policies state how authorization checks are performed by 
components within the SoS. Specific mechanisms for access control (lists, matrices, etc.) 
must be detailed as well as how access control is granted (mandatory access control, role- 
based access control, etc.) [10-12]. Policy specifications may require local authorization 
or enable remote authorization for the establishment of trusted channels for which 
information may be passed through [4]. Other policies track access time to establish 
temporal constraints for authorization [4, 11, 13]. 

Backup procedures and redundant system requirements are specified with 
contingency planning policy statements. Operational specifications of the contingency 
plan dictate what mechanisms should be available for expressing how backups should 
record data (differential, incremental, etc.) as well as any transactional database 
requirements that are used by the SoS (roll-back, roll-forward, etc.) [14, 15]. Where and 
how the backup systems are stored within the SoS, such as initiating a dedicated 
component or tasking an existing component, are specified with contingency planning 
policy statements. Thus, the policy can define local or remote backup systems. 

Data protection defines constraints on how data is encrypted and stored or 
transmitted between components of the SoS. Policy statements can specify the types of 
encryption (RSA, DES, AES, etc.) and constraints over the size of any keys or validity 
periods [10, 16]. Composing policy statements over a set of interacting components 
dictates the specific types of data that traverse the SoS. Requirements often coincide with 
the communication style used by the component for exchanging information (e.g., stream 
or block transportation). 

A final policy type invokes mechanisms used to attain non-repudiation between 
SoS components. Non-repudiation concerns trust and integrity of information, 
specifically the cryptographic methods and algorithms that prevent SoS entities from 
denying having performed actions over data [4]. These policy statements describe the 
protocols and mechanisms (KE, ZDB, Bao, etc.) that provide non-repudiation [17], as 
well as any constraints the SoS may place on their configuration such as key sizes and 
data validity periods. Attributes about the non-repudiation policies include the delivery 
mechanism used by the algorithm (submission, transport, both) [4] and the interactivity 
that is required by the system (synchronous, asynchronous) [18, 19]. 

We do not address policy types that do not directly relate to observable features of 
SoS components, such as those policies focused on managing incident response [5], 
environmental protection [5], security user roles [4], and personnel training [5, 20]. While 
these policies are crucial to the entire certification process and the maintenance of secure 
systems, the focus of the SCM framework is design-time analysis of the SoS components 
and their configuration. Thus, a variety of security policy types are ignored including 
those related to organizational, systems maintenance, managerial, environmental, 
training, risk assessment, and systems acquisition [5]. 

1.1 Descriptors 
Foremost to formulating a uniform and comparable security policy models is the 

accumulation of a strong policy information base acquired from reliable sources. The 



model should support property and expectation comparisons, not just among policies of 
the same type, but across policies of different types as dictated by security certification 
criteria. 

Our approach to modeling and comparing the numerous criteria and the qualities 
embedded in both security policy statements and certification criteria is based on 
separation of concerns. From this perspective, we introduce eight descriptors that 
structure and organize relevant policy and component information across distinct 
concerns. There are two classifications of descriptors. Architectural descriptors dictate 
component interaction expectations and partners (neighbors). Policy descriptors express 
the governance properties of each policy. Because they are based on concerns, the 
segregation of descriptors is independent of the policy type. Therefore, the descriptors 
span all policy types by allowing overloading of attributes and methods expressed in the 
resulting profile. 

1.1.1 Policy Descriptors 
Policy descriptors express concerns related specifically to governing the security 

of the component. Separating the descriptors across policy information more directly 
dictates how assessment is targeted. A necessary level of coverage across the information 
that should be recorded by a component is required to ensure that proper policy 
description and analysis can occur. Figure 1 shows the interrelation between the five 
policy descriptors our framework uses for policy description. These are security policy 
assertions, observable behaviors, mechanisms, policy constraints, and dependencies. We 
overview each descriptor model. Definitions of the internal contents of a descriptor can 
be found in [21]. 

PotcyT/pe 

Policy Constraints 

Security Policy Assertions 

Observable Behaviors 

Dependencies 

Figure 1. Policy Descriptors 

At the core of the description for each policy type are security policy assertions 
and observable behaviors. Security policy assertions contain key fundamental statements 
about the policy statements for each component. The security policy assertions descriptor 
defines specific policy attributes that are static for each component within the SoS across 
each policy type (i.e., audit, authorization, etc.). The attributes form a foundation for 
direct policy comparison to detect conflicts. Assertions values are derived from general 
policy understanding and common attributes needed for certification. The most basic 
assertion is the Boolean capability that indicates whether or not the component's expose 
interface has a policy of a particular type. The absence of a policy is a policy in itself and 



must be accounted for when assessing compliance [2, 10]. As an example, attributes of 
the security policy assertions descriptor can detect and ensure that each component 
contains an audit security policy for compliance assessment of a system-wide policy 
mandating the centralized collection of audit records from SoS components. Another 
assertion is response type. For example, an audit policy specifies the type of messages 
that must be generated (e.g., email message, report, database entry, etc.) [4]. 

The observable behaviors descriptor uniformly states how a policy restricts 
component behavior at an exposed interface. Describing the functional aspects of each 
policy is accomplished via overloaded methods that abstract behavior concepts. The 
instantiation of this descriptor describes the allowable behavior of the component, as 
restricted by the security policy, in terms of what information is exchanged between 
components. Specifying component behavior is a key need for certification. For example, 
NIST specifies assessment needs with respect to interconnection agreements [22]. The 
DGSA advises a strict isolation between information domains [3]. The observable 
behavior descriptor purposely allows overloading its methods to achieve expression 
across the different policy types. Various interaction behaviors that exist between 
components include sendData, receiveData, delegateData, transferData, shareData, 
initializeData, manageData, broadcastData, and requestData, where Data is the data 
type instantiated in the security policy assertions descriptor for each policy type. For 
example, sendData may refer to the authentication response for an authentication policy 
or the log file entries for an audit policy. Observable behaviors do not refer to specific 
code or mechanisms used to transmit data. These concerns are relegated to the 
mechanism descriptor, described next. 

Directly surrounding the core observable behaviors and security policy assertions 
in the framework is the mechanism descriptor that contains references to specific policy 
enforcement technologies. The mechanism descriptor expresses how a policy is 
implemented and deployed at an exposed interface. The descriptor records the possible 
policy enforcement mechanisms that a component supports. Policy enforcement 
mechanisms have been extensively cataloged by government agencies [9, 15] and 
certification agencies [2, 4]. The mechanism descriptor encompasses a model the 
mechanism adheres to and the mode it uses to enforce the policy. It names the data of the 
correct type given in security policy assertions. Thus, dataName indicates an enforcement 
type such as password, certificates, or PKI [2, 4, 9] for a authentication policy. Another 
example in which to explain the specific model a policy must adhere to is the case of data 
protection policies where different encryption algorithms may be used for the encoding of 
data (RSA, DES, AES, etc.) [10, 16]. The mechanism mode describes details of the 
policy implementation such as a contingency planning policy that may specify 
incremental versus differential backup plans [15, 23]. 

Dictating inter-descriptor compatibilities within a single policy type is 
accomplished via the specification of policy constraints. Policy constraints selectively 
apply mechanisms of the framework to observable behaviors. These constraints may 
encompass combinations of policy attributes, methods, and timing, based on the SoS 
system requirements and the properties of interaction partners of the component. The 
policy constraint descriptor supports the differentiation between trusted and untrusted 
components. If an interaction partner is not known to be trusted, a different set of 
behaviors are expected that rely on a different set of mechanisms than those for a trusted 



component. Thus, the constraints descriptor aids the expression of CERT suggestions for 
adding additional levels of encryption to communicating components using untrusted 
network segments [2]. Other types of constraints, such as minimum password lengths 
[24] and using shared authentication data to develop trust within the SoS [25] are 
supported via a set of allow and check methods that rely on UML OCL statements that 
are expressible within the modeling framework. The constraint descriptor is one of the 
few descriptors that expects its entries to be customized to the components functionality 
within the SoS and the neighbors that the component may potentially interact with. 

Table 1 provides a sample of the types of overloaded entries that are present in the 
four descriptors discussed above and shown in the first column. The second column 
shows sample attributes and methods. The third column indicates possible instantiations. 
The last column is the policy type for which such an instantiation would be valid. Policies 
requiring entries not directly supported by the overloaded descriptors can extend the 
model and define unique policy-specific entries as needed, enabling the framework to 
uniformly represent a wide variety of policies. 

Table 1. Sampling of overloaded descriptor entries 

Descriptor Entry Example Values Policy Type 

Mechanisms 

data Password, certificate, PKI Authentication 
data Symmetric key, public-private pair Data Protection 
mode CCB, ECD Data Protection 
mode Bit, byte Non-Repudiation 
model RBAC, IBAC, MLS, DAC, MAC Authorization 
model KM. ZDB, Bao, Markowitch Non-Repudiation 

Observable Behaviors 

requestData() Requests for access Authorization 
requestDataQ Encryption requests for public keys Data Protection 
response Allow, deny Authentication 
response Allow, deny Authorization 
shareData() Transfer log entnes for storage Audit 
shareData() Copy backup files offsite Contingency Planning 

Security Policy 
Assertions 

dataType E\«nts, signatures, patterns Audit 

dataType Roll back, roll forward Contingency Planning 
interactivity Single login, interactive Authentication 
interactivity Synchronous, Asynchronous Non-Repudiation 

Policy Constraints 

checkDataLength() Checks length of log files Audit 

checkDataLengthQ Checks length of password Authentication 
modelComplexity Password complexity policies Authentication 
modelComplexity Encryption algorithm complexity Data Protection 

The last policy descriptor to discuss is the dependencies descriptor. This 
descriptor maintains the desired cross policy constraints for component. For example, 
authentication policies can depend on audit when a policy statement requires logging the 
successful or unsuccessful attempts at authentication to detect system intrusion [2, 26]. 
Dependencies describe interrelationships between different security policy types by 
explicitly stating links rather than anecdotally via commonly accepted connections. The 
concern is that if one policy type is in conflict with a neighboring policy type (at an 
exposed interface) then it is essential to know if that conflict can propagate to other 
policy types causing an indirect conflict or violation. Thus, the dependencies descriptor 
expresses inter-policy governance. Dependencies can also be defined from the 
component's perspective in the SoS to facilitate the analysis of system-wide, cross policy 
requirements. Multiple descriptor requirements permeate the dependency between policy 



types, e.g. (1) two different policy types must both contain security policy assertion 
descriptors with a true capability, (2) the authentication policy must define observable 
behaviors that share a Boolean authentication response, (3) the audit policy must support 
storage of failed authentication attempts, and (4) the audit policy must support a 
mechanism that delivers alerts to an intrusion detection mechanism. Figure 2 shows a 
sample of the complex interdependencies between the various policies related to 
confidentiality [3], secure file backups [2], the protection of trusted functions [4], and 
other industry standards. 

Protection of Trusted Functions 

1 
Audi Authentication 

1 
Authorization 

1 1          r- J 
ty Log Authentication Failures                             Protect Confidential 

Encrypt User Passwords 
Secure File Backups 

1 1          1 
Contingency 

Planning 
Data Protection  1 Non- 

Repudiation 

Figure 2. Dependency Descriptor Interrelationship 

The combination of the policy descriptors and six policy types along with 
dependency specifications enables the SCM framework to represent a variety of policy 
specifications for SoS components. Compliance assessment is possible via analysis of all 
policy descriptors across all policy types by examining the component linkage that exists 
within the SoS architecture. Information about SoS links and communication pathways is 
necessary for the analysis and is defined by a set of architectural descriptors described in 
the next section. 

1.1.2 Architecture Descriptors 
In the SCM framework, three architectural descriptors express a component's 

perspective of its processing expectations within the SoS. That is, architecture descriptors 
indicate who the component's interaction partners are (configuration), how the 
component communicates to them (communication), what state the component is in 
(state). By definition of a SoS, each component is linked to one or more interaction 
partners. The configuration descriptor explicitly identifies the links facilitating the 
description of trust according to the interaction partners that are under scrutiny. The 
communication descriptor specifies the architectural characteristics of the link including 
an interaction style (send, receive, broadcast, poll, etc.) [27, 28], quality, and frequency, 
as well as the types of data that are sent over the link between components. 
Communication can be affected by various security policy requirements such as 
encryption that can reduce the speed and quality of the link [29]. Finally, a state 
descriptor is used to specify the interaction and data states that a component may 
encounter as it exchanges data and control with other components. The interactions 
between components within a SoS can trigger state changes for which security policy 
specifications dictate behavior. The communication style can be analyzed in conjunction 
with state and configuration to determine if there are any interoperability problems that 
can affect security compliance with the components participating in the interaction. The 



three can also provide a representation of the SoS overall and its communication 
infrastructure and composite state. 

Table 2 samples some attributes of the architecture descriptors with examples of 
allowable values that can be used within the CPP. 

Table 2. CPP Descriptor Attribute Values 

Descriptor 
Category Entry Description Allowed Arguments / Values 

Communication 

sendDataOverConnector Method used to send data to a 
specific Interaction Partner 

Interaction Partner, mech.Data 

receiveDataOverConnector Method used to receive data from a 
Interaction Partner 

Interaction Partner, mech.Data 

Configuration partners The set of Interaction Partners 
associated with a secComp 

Interaction Partner 

1.2 Certification Criteria 
A major difficulty in software security certification is the disconnect between the 

generic, documented criteria and the formulated requirements statements that are needed 
to show SoS compliance. The SCM framework we have developed offers a foundation to 
classify and dissect generic criteria to interpret and express them as requirements with 
direct applicability to the underlying SoS policy model. The SCM framework then assists 
the model-based expression of a software component's security policies while 
simultaneously reformulating criteria statements in a manner that allows evaluation. 

The SCM framework has been built to support criteria taken from the DIACAP 
LA Controls [9], Common Criteria [30], and NIST [15] while still retaining an open 
approach enabling other criteria documents to be incorporated in the future. For this 
report, we examine criteria statements taken from the NIST document SP 800-53, 
summarized in Table 3 [15]. The statements specify the recommended security controls 
for the auditing of information systems. NIST isolates controls in accordance with 
security baselines for low-impact, medium-impact, and high-impact information systems. 
Depending on the classification of a system different security controls are recommended. 



Table 3. NIST security controls for audit 
Description NIST 800-53 control no. 

The information system generates audit records for events per 

system as chosen by the organization . AU-2 

The information system provides the capability to compile audit 

records from multiple components throughout the system into a 
system wide (logical or physical), time-correlated audit trail. 

AU-2(1) 

The information system provides the capability to manage the 

selection of events to be audited by individual components of 
the system 

AU-2(2) 

The information system produces audit records that contain 
sufficient information  to establish what events occurred, the 

sources of the events, and the outcomes of the events. 
AU-3 

The information system provides the capability to centrally 

manage  the content of audit records generated by individual 

components throughout the system 
AU-3(2) 

As shown in Table 3 each control has one or more topics of focus related to 
secure auditing. Italics are used to place emphasis on key issues each criteria addresses. 
The goal is to dissect the criteria, narrow the scope of its software policy applicability, 
and associate the criteria with the descriptor models. Thus, associating each criteria 
statement to policy descriptors requires an intelligent decomposition of the criteria. From 
these associations, directly expressible security requirements emerge with which the 
modeled SoS must comply. Granted, some criteria statements do not have a direct 
applicability to the component level. For example, NIST AU-2 stipulates an information 
system must generate audit records as determined by the organization. Certification 
against this type of criteria statement must be performed at a managerial level in order to 
determine that the organization has defined the audit record entries the information 
system must record. No descriptor or policy type in the CPP can adequately prove this 
statement is satisfied. 

Other criteria statements such as AU-2(1) have more direct ties to component 
policy representations. AU-2(1) contains high-level criteria that "components must 
maintain audit records" and "components must be able to transfer audit records to other 
components" that can be represented with descriptors. Additionally, overlap can exist 
when examining multiple criteria such as the "system wide" audit trail required by AU- 
2(1) and the "centrally managed" audit records stated in AU-3(2). 

Our approach uses grammatical constructs and information analysis techniques to 
form intermediate decompositions for a more general semantic labeling. The intermediate 
representation can then be mapped into descriptor attributes and methods. Thus, the 
approach forces the criteria into a requirements statement that is comparable to policy 
models. Without this uniformity, violations in compliance could not be verified. Table 4 
outlines a detailed decomposition of the AU-2(1) criteria mapping specific statements 
such as "multiple components" to the descriptors for policy constraints and configuration. 
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Table 4. AU-2(1) Criteria Decomposition and Mapping 
Phrase Intermediate Decomposition Descriptor Mapping 
The information system System, SoS System, SoS 
provides the capability Process, function Mechanism, Policy Constraints 
To compile store, collect, aggregate Observable Behaviors 

audit policy type Security Policy Assertions 
records data type Security Policy Assertions 

from transfer 
Communication, Observable Behaviors, 
Mechanism 

multiple per component Policy Constraints 
components many components Configuration 

throughout the system all components possible Configuration 

into input, receive 
Communication, Observable Behaviors, 
Mechanism 

a system-wide over all components, central Configuration 
time-correlated data organization type Security Policy Assertions 
audit policy type Security Policy Assertions 

trail. storage, series (records) Security Policy Assertions 

Correlating the different descriptor mappings enables more direct codification of 
criteria details using the CPP model. Each descriptor defines the methods and attributes 
required for policy expression. The descriptors were refined to further reflect the 
parameters and arguments as determined by criteria specifications. 

1.3 Component Protection Profile 
The accumulation of the instantiated descriptors for a particular component forms 

its Component Protection Profile (CPP). The CPP is defined by extending the Unified 
Modeling Language meta-model (UML). The composition of all CPPs for the 
components in a SoS represent its set of local policies. Because of the way that we 
manage the security certification criteria, as discussed above, the CPP also provides the 
foundational units for criteria expression [31]. Shown in Figure 3 and Figure 4 the CPP 
distinguishes between architectural and policy descriptors using UML stereotypes to 
extend the meta-model according to our approach to support security policies. The main 
component, secComp, has associated architecture descriptors, Configuration and State, 
that provide a foundation for interaction. 

In the lower left of Figure 3, the Configuration stereotype contains the set of 
Interaction Partners, each of which is a secComp known to be trusted or not by the 
component. Interaction between components is specified using one or more Port 
specifications. Each Port is an exposed interface of the component. The Port defines its 
communication style with the Communication descriptor, born out of research results on 
interoperability analysis and the communication conflicts that can contribute to security 
vulnerabilities [32, 33]. Enumerations are used throughout the CPP specification to 
provide the acceptable information for specific types of interaction and policies. For 
example, an InteractionType within the Communication descriptor is used by the 
component to describe the specific type of interaction, e.g., send, receive, broadcast, and 
poll, that it expects to exchange data and control with the other components that 
communicate at that interface port. 
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«metaclass» 

1 
*<mm**> 

•stereotype" 
ArchDescriptor 

1 
«stereotype» 

PolicyDescriptor 

«meta class* 
Component 

« stereotype » 
secComp 

namef.1I: String 
domain[1] : String 

Conftguration» cnfg[1.,"] : ArchDescriptor 
«State» st(1]: ArchDescriptor 
portsfl *]: Port  

interactionDelayfl] : Long 
nteractionFrequency(1] : Long 
mteractionGuality(l): Quality 
interactionType[1] : InteractionType 

« stereotype* 
Communication 

sendDataOverConnectorfjn toComp : Interaction Partner, in data : Data) 
receiveDataOverConnector(in fromComp : Interaction Partner): Data 
delegateTask(in toComp  Interaction Partner) 
forwardTask(in fromComp: Interaction Partner, in toComp: Interaction Partner) 
readSystemVariableO . Data 
writeSystemVariabtefm Mech data : Data) 
pollforDataQ : Data  

«metactass» 

« stereotype* 
Port 

nameft]: String 
<<Communication>> comm[1]: ArchDescriptor 
<<Dependencies»dep[1]: PolicyDescriptor 
policyp..6]: Policy 
compTypefl] : CompType  

Artfact 

« stereotype » 
Policy 

type[1l: Policy Type 
cridcality[1] : CriticalityLevel 
«Security Policy Assertion>> spa[1]: PolicyDescriptor 
<<Observable Behaviors>> ob[0..1J: PolicyDescriptor 
<<Mechanism» mechfO.I]; PolicyDescriptor 
<<Policy Constraints» constrfO.1] : PolicyDescriptor 

«stereotype» 
•metactass* 

atss 
Interaction Partner 

trusted[1]: Boolean 
comp[1] : secComp | •"•Mam w> 

•stereotype* 
Configuration 

partners[1  "]: Interaction Partner 

•stereotype* 
Dependencies 

encrypt(in mech data : Data): Boolean 
decryptEncryptedOataO ' Boolean 
authorizetjn comp : Interaction Partner, in mech.data : Data): Boolean 
backup(in mech.data * Data): Boolean 
restoreFromBackupO : Boolean 
logEventsfln comp   Interaction Partner, in mech.data   Data)   Boolean 

Figure 3: Component Policy Profile and Architectural Descriptors 

• stereotype*Observable Behaviors 

requestData<in fromComp : Interaction Partner); Data 
sendData(in toComp   Interaction Partner, in data : Data) 
receiveData(in fromComp : Interaction Partner)   Data 
delegate Data(in toComp   Interaction Partner, in data : Data) 
transferData(in fromComp   interaction Partner, in toComp . Interaction Partner, in data : Data) 
shareData(in withComp   Interaction Partner, in data : Data) 
initializeExtemaiDeta(in toComp   Interaction Partner, in data   Data) 
manageExtemalData(in toComp   Interaction Partner, in data : Data) 
broadcastData(out out  Mech.data) 

Typ. 

•stereotype* 
Model 

type 
complexity   Long 

• stereotype* 
Data 

data Name 
length   Long 
initTime 
version   Integer 

dataLength : Long 
dataVali dityPenod : Penod 
model Complexity   Long 

« stereotype* 
Policy Constraints 

check Data Lengthen Mech. data, length   Long)   Boolean 
check Data Valid rty(m Mech. data. irotPenod)   Boolean 
checKModefComplexity(in Mech.model complexity   Long)   Boolean 
allowlnitialization()   Boolean 
allowManagement()   Boolean 
allowSharmgO   Boolean 
allowDelegation() ; Boolean 
allowTransfer()   Boolean 
allowSendO   Boolean 
allowReceiveO   Boolean 
allowRequestQ   Boolean 

•stereotype* 
Mechanism 

data   Data 
model   Model 
mode   Mech Modes 

initialize Internal Data(in struct Security Policy Assertion dataType, in type 
managelntemalData(in struct Security Policy Assertion dataType. in type 
destroy R as tdualData() 

Security Policy Assertion. dataType) 
Security Policy AssertioadataType) 

•stereotype* 
Security Policy Assertion 

capability   Boolean 
interactivity   Interactivity 
interpretation ; Interpretation 
response: Response 
location   Location 
can-yMuitipieData   Boolean 
dataType  DataType 
data Reusability   Reusability 
dataStructure   DataStructure 

Figure 4. Component Policy Profile Policy Descriptors 
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Each Port can express all six security policy types. This model allows for 
different policy properties to be expressed depending on what the exposed interface of 
the component does and whether there is more than one. For example, pulling from a 
database might be the exchange at one port and pushing data to another component for 
processing might be at another port. Policy instantiations for SoS components is 
accomplished by taking the policy specification and mapping it to the appropriate 
descriptor entries as needed. For example, an audit policy defined for a component 
necessitates the Security Policy Assertion attribute dataType to be set to audit record. 

The CPP also involves the Object Constraint Language (OCL) [34] to establish 
the formal definitions of the policy constraints and dependencies descriptors as well as 
safety properties related to certification criteria. Figure 5 below shows an example of the 
NIST AU-2(1) criteria statement written in OCL and formatted to evaluate over the CPP. 
Criteria statements at this stage are not dependent on an instantiated CPP, and thus do not 
require the SoS, its components, or the policies to be known until a compliance check is 
performed. 

Instantiating the CPP for each component represents the sum of the components' 
security policies. Thus, the SCM framework allows a uniform view of security 
governance from the component-perspective. Partial specifications of policies are 
allowed and still contribute to compliance assessment. 

Once instantiated CPPS can be reasoned about as composed unit by applying the 
criteria in conjunction with OCL statements. The SCM framework offers the foundation 
for a robust representation to determine the presence of incompatibilities and violations 
of compliance with applicable security certification requirements. Incompatibility in the 
case of the NIST AU-2(1) is shown by locating a component in the SoS that does not 
contain an audit policy or that cannot communicate its audit records to another 
component. 

context: Policy 
inv: Policy.alllnstances -» // Invariant for all policies in SoS 

V p : Policy 1 p.name = "Audit" // For all policies of type "Audit" 
^3 

p.spa.stated A p.spa.dataType = "event" A p.spa dataStmct = "audit record" // Policy must be stated 
A p.mech.operations—>exists("initializeInternalData") // initlniData operation must exist 
A p.mech—>initializeInternalData(p.spa.dataStruct. p.spa.dataType) // Policy must use correct mechanism 

context: InteractionPartner 
inv: InteractionPartner.alllnstances —» // Invariant for all IPs in SoS 

3 ipl, ip2 : InteractionPartner 1 ipl <> ip2 // ipl is not equal to ip2 
A 3 poll : ipl.port.Policy, pol2 : ip2.port.Policy 1 

poll.name = "Audit" AND pol2.name = "Audit" II Both policies are of type "Audit" 
A pol 1.ob.operations—»3 "transferData" 
A poll ob->transferData(ip2, poll .mech.data) 
A ipl.port.comm.operations—»3 "sendDataOverConnector" 
A ip 1.port.comm—>sendDataOverConnector(ip2, poll.mech.data) // ipl can send data to ip2 
A ip2.port.comm.operations—»3 "receiveDataOverConnector" 
A ip2.port.comm—>receiveDataOverConnector(ipl) II and ip2 can receive data from ipl 

Figure 5: OCL Constraints on Component Policies for AU-2(1) 

The OCL statements in Figure 5 are safety properties - constraints on the policy 
capabilities. The first AU-2(1) constraint stipulates the requirement for components of 
the SoS for maintaining audit records. This is stated by requiring that an audit policy 
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must be stated, that a mechanism in each component must exist to initialize the audit 
records, and that the component policy must adhere to the correct mechanism for 
recording audit information. The second constraint of AU-2(1) stipulates that components 
must support the transfer of audit records to different components. The CPP model uses a 
concept of Interaction Partners to establish communication between components. The 
OCL constraint states that two components must be able to transmit their respective audit 
records via connectors within the SoS. Understanding the full meaning of the OCL 
statements requires the model over which it is defined. These constraints are directly 
evident within the policy profile of the components and their interaction partners. Thus, 
verification can performed when the certification criteria are expressed in the same terms 
as the model. 

2. Moving Toward a Formalism 
Though the CPP was found to be well structured from a component perspective, 

the use of OCL for the comparisons against security certification criteria was quite 
cumbersome (as seen in Figure 5), even for basic safety properties. Therefore, concurrent 
to exemplifying the model, we investigated the prospect of using a formal specification 
language. This investigation included a formal definition of the SoS as a composition of 
component properties, including their policies. However, no languages existed that 
clearly modeled SoS in a way that would allow us to express security requirements as 
safety and progress properties both locally and globally. Therefore, we first needed to 
extend a language to accommodate the model constructs. We chose Context Unity [35], a 
derivative of UNITY [36] as the base formalism because it has a proof theory associated 
with its execution model. This section discusses the new derivative of UNITY, called X- 
UNITY (pronounced Crass-UNITY), that captures programmatic, structural, and scoping 
properties of SoSs [37, 38]. We apply similar examples from security audit criteria to 
illustrate the application of the formalism. 

2.1 Some Background in Context Unity 
Specification formalisms for SoS must portray hierarchical composition, where 

intermediate results can be formed and then further composed. We focus on Context 
UNITY [35] which extends UNITY'S programming model [36] to include distribution 
and interactions with an operational environment through context programs. The primary 
unit of specification in Context UNITY is the program. Context UNITY represents 
systems in both an imperative manner (using actual program statements) and a 
declarative manner (stating program properties). In addition to its specification 
constructs, it contains an execution model and a proof logic that allows temporal 
reasoning. We review Context UNITY to the extent that is needed for our extension and 
examples. Figure 6 shows its basic structure. 

Context UNITY program, P, describes a state transition system consisting of 
variable declarations (declare), initial values for variables (initially), and assignment 
statements (assign). Statements are executed with weak fairness in that they are executed 
non-deterministically, infinitely often. 
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System SystemName 
Program P<parms > 
declare 

exposed // public variables 
internal // private variables 
context // handles to other public vars 

initially // initial values for public/private vars 
assign // programmatic state changes 
context // programs that use context variables 

// to interact with environment 
endP 

Components // the instantiated programs in the system 
Governance // global impact statements 

end SystemName 

Figure 6: Context UNITY Specification Structure 

The declare section is divided into variable types for exposed, internal, and 
context. The context program following the assign section specifies how changes in the 
environment's state are reflected in the values of exposed variables, which in turn can 
influence another program's context variables. Thus, the context program provides 
components with explicit and individualized interactions within their contexts. The 
Components section is used to define Program instances. The Governance section 
contains rules for behaviors that have a global impact on the system. These rules rely on 
the state of exposed variables throughout the larger system to affect other exposed 
variables in the system. 

Given that programs are actually code, they must be instantiated to form a system. 
A system may "run" many instances of a program. Program instances in Context UNITY 
are distinguished by passing parameters (depicted by <parms>) during system 
initialization that includes a unique instance identifier. Thus, Context UNITY provides an 
initial foundation for structuring the specification of SoS designs. 

2.2 Creating X-UNITY 
A SoS retains constructs that are derived from its component systems. These 

restrictions imply that candidate systems for inclusion in the SoS are isolated [38] prior to 
the SoS being composed. For example, centralized functions may need to be merged 
across competing/cooperating sub-systems. However, systems which are good candidates 
for reuse in SoSs have little or no centralized control, facilitating the formation of 
composites [39]. Therefore, constructs, such as centralized control, are strong indicators 
of isolation and security compliance failure. 

Given SoS characteristics, we must adhere to a specification framework that 
provides a structure reflecting the concepts of scope, interaction, and reuse while 
providing mechanisms to support reasoning and proof. The framework requirements 
should (1) allow multiple architectures for governance and control [39], (2) represent 
component layering and hierarchies, (3) include imperative and declarative viewpoints, 
(4) express abstract design and their instantiations, (5) specify different interaction styles 
(e.g. explicit, implicit, indirect) and (6) depict the concept of reuse of existing program 
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and system types to model the inheritance of software behaviors from classes or species 
of software artifacts. 

To define X-UNITY 
1. We formally induce a hierarchy of module specifications to represent the 

SoS configuration by augmenting the Context UNITY specification labels 
of System and Program with SoS. 

2. We differentiate explicitly between a system design specification and an 
instance of the specification as a particular use of the design to reflect the 
concept of reuse. This differentiation is done with the introduction of 
include for reusing an encapsulated entity and System Instances as the 
instantiation of Systems. 

3. We allow program variable exposure outside of the scope of the reused 
system through the introduction of promote. 

These novel extensions allow X-UNITY to express a SoS so that it can be reasoned about 
in the context of other systems, not just programs. 

Figure 7 shows the basic structure for X-UNITY specifications, illustrating the 
notation and hierarchy extensions. Though System specifications are similar to Context 
UNITY, our introduction of include lets us refer to programs that may be specified 
elsewhere. Thus, include allows the module name to represent its entire specification 
template. This convention leads to simpler specifications of higher-level systems and 
provides a consistent notation for reuse using module names. It also makes system 
composition explicit in X-UNITY, which facilitates reasoning about SoS applications. 

A similar convention is introduced at the SoS level that encompasses all modular 
entities. Where a Program serves as a template for instances of Components in Context 
UNITY, we extend this approach to include the instantiation of System specifications 
into particular System Instances. Thus, when we name a system template as include 
System, this name serves as a reuse symbol in another SoS. When we give an instance of 
a template a unique identifier as in Components or System Instances, that instance may 
be referenced explicitly during execution. 

This makes a System a type, while a particular System Instance is a 
parameterized occurrence of that type. A SoS describes a particular interacting set of 
system instances. If a SoS is to be reused as a component of another system, it too can be 
considered a System type if needed. 
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System SystemName 
include Program ProgramName 1 
include Program ProgramName2 

Components      // specific program instances 
// ProgramName 1 (1 ),..,ProgramName(n) 

Governance 
promote x as w in * 

end SystemName 

SoS SoSName 
include System SystemName 1 

System Instances 
// configuration of specific system 
// instances within the SoS 

end SoSName 

Figure 7: X-UNITY Basic Specification Structure 

The notational extension of promote alters the scope of the exposed variable x to 
include all systems (*). Promote makes x available under the alias w in a system s such 
that w e s.exposed; where v.exposed is the set of names for all exposed variables 
available in s. Alterations to the var [ ] table in Context UNITY for defining exposed 
variables are needed to formally represent promote. For x's scope to now include s 
means that a Program in s can select the variable x using its attributes, including its 
aliases, in the Program context rules. 

Promote appears in the Governance section of a System. Recall that systems are 
allowed to have system-wide governance, while SoSs are not. This approach conforms to 
the definitions of a SoS as a collection of autonomous systems. Thus, promote is a core 
concept for X-UNITY to provide a form of selective composition. It helps capture the 
unique compositional properties of systems in a SoS. If two systems are formally 
composed in UNITY, it is done by a union theorem that forces all exposed variables to be 
public to other systems. The pairing X-UNITY's promote with Context UNITY'S uses 
rules constrains this formal union to make it possible to achieve more remote interactions 
with components that are in a local environment. This induces a reaction based on 
context variables that are quantified over the local environment via uses. If such 
constructions are effective, they create good SoS, even when the elements of the 
composition are heterogeneous. 

2.3 Modeling the SoS Hierarchy 
We reuse the security audit criteria from Table 3 within a distributed systems 

environment as a vehicle for exercising the features of X-UNITY. We take a more global 
perspective that is rendered in the CPP. We first specify a system of components that 
capture detected auditable events and generate event notifications within X-UNITY. We 
limit the code specification to only security audit properties. 

Notifications are retained in an exposed variable, notify, for later review by 
auditors. The notify variable can be any type of local storage that is accessible to other 
programs. Here, it is a set of audit records, each of which is an ordered pair with a 

17 



timestamp and audit information fields, such as the type of event and the component 
identifier. The function detectEvents() returns the set of events detected in the local 
environment since it was last invoked. In AuditableComponent (Figure 8), once the 
events are saved in notify there are no further state changes. 

Program AuditableComponent 
declare 

exposed 
notify: Set of AuditRecord 

initially 
notify := 0 

assign 
notify := notify u detectEventsQ 

end AuditableComponent 

Figure 8: The Program AuditableComponent 

AuditCollector (Figure 9) uses a context variable, auditCache, to collect the 
notifications from components in its same system with the exposed variable, notify, 
where notify contains notifications that are not yet in the audit trail. Thus, it does not 
execute as a stand-alone component. The uses statement "loops" over all p, in which n is 
local to the scope of the loop. Effectively, component interfaces are advertised by their 
exposed variables and selected for use by the quantification of uses context rules. 

In AuditCollector, variables named notify are selected from all programs p that 
satisfy the given clause and are bound to the handle n. The "!" notation is used to 
associate a temporary handle, n, to each matched instance of notify. Becomes is 
assignment (from Context UNITY). The auditCache values are eventually assigned to the 
exposed variable auditTrail using the statement in the program's assign section. Weak 
fairness of UNITY's execution model assures that all statements are selected for 
execution infinitely often. Given the rules in its context program, other components, such 
as those that instantiate AuditableComponent, must provide their audit notifications as 
exposed variables for collection. 

Program AuditCollector 
declare 

exposed 
auditTrail: Set of AuditRecord 

context 
auditCache: Set of AuditRecord 

initially 
auditTrail, auditCache := 0, 0 

assign 
auditTrail:= auditTrail u auditCache 

context 
auditCache 

uses n!notify in p 
given —in s auditCache) 
where auditCache becomes auditCache u n 

end AuditCollector 

Figure 9: The Program AuditCollector 
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In Figure 10, we specify a System of the components in Figure 8 and Figure 9 
using the include statement to indicate reuse by copy of the previously defined program 
types. Without include, we would have to repeat the entire program specifications within 
the system. Reuse results in more complex specifications because all relevant component 
information must be considered. Therefore, the benefit of include is that it provides a 
construct for better management of these complex system representations, while 
mimicking actual reuse and composition. 

System CollectedAuditSystem 
include Program AuditableComponent 
include Program AuditCollector 
Components 

<• i :: AuditableComponent(i)) 
• AuditCollector 

end CollectedAuditSystem 

Figure 10: The System CollectedAuditSystem 

A program template (named within an include statement) is instantiated in the 
Components section as needed. Instances have unique identities that make them 
available for later reuse as services by other systems in the SoS specification. The 
notation 'D i ::' means that there are T AuditableComponents that execute 
asynchronously, each with a unique identifier. 

To show the compliance of CollectedAuditSystem with the requirement of AU- 
2(1) in Table 3, we formulate a UNITY progress property (PI below) to generically state 
that eventually there is at least one component which has the complete representation of 
a system-wide audit trail. This requirement is apparent in the decomposition in Table 4 
where the use of the Configuration descriptor is shown. In OCL, the statement can only 
be that each component has the capability to transfer and there exists a component that 
can collect them. However, the leads-to property is not specifiable in OCL, because OCL 
can only represent safety constraints. Moreover, the leads-to property is global and 
concise. That is the beauty of the UNITY language. Because we have retained the 
UNITY execution model, we have use of its temporal proof logic. A "dot" notation 
expresses the hierarchy of modules and variable names within the X-UNITY 
specification. 

(PI) 3c G CI <Vr e Clee t.notify leads-to e G c.auditTrail> 

Given the system CollectedAuditSystem the statement PI reasons over all program 
components (V7 G Q that are reused within a composite system, such that when t 
receives an event (e G t.notify ) there is at least one component (3c G C) that will 
eventually acquire the event in its audit trail {e G c.auditTrail). Without the X-UNITY 
extensions, this statement would not be easily expressible or provable, and further 
reasoning about SoSs would prove difficult. It can be directly seen that auditTrail in 
AuditCollector of CollectedAuditSystem contains all notifications from all i, such that 
AuditableComponent(i), to comply with PI. 
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2.4 Verifying Compliance of a SoS in X-UNITY 
Figure 11 introduces a simple SoS specification as a composition of system 

specifications, showing X-UNITY's capability to explicitly denote the structural 
relationship between a SoS and its component systems. In Figure 11, SoS ASReplicas 
includes multiple system instances of CollectedAuditSystem (Figure 10). 

SoS ASReplicas 
include System CollectedAuditSystem 
System Instances 

(0 i:: CollectedAuditSystem(i)) 
end ASReplicas 

Figure 11: The SoS ASReplicas 

The constraints of X-UNITY force system-to-system interactions to be made 
more explicit representing the abstract composition of Configuration descriptors. This 
convention provides a degree of encapsulation where systems have an inherently defined 
individuality even if they interact in larger systems. Compositions occur via well defined 
interfaces at the Port (in the CPP) are explicitly exposed and controlled by processes and 
policies designed for those types of interactions. 

In the case of SoS ASReplicas in Figure 11, each individual CollectedAuditSystem 
can be proven to satisfy PI. Thus, each component complies locally with the audit 
criteria. However, when reused as multiple instances of a system, SoS ASReplicas fails to 
satisfy PI. Each system expects to actively use external information but does not allow 
access to their internal information. This abstraction would be included in the CPP's 
mechanism descriptor. 

The result is the lack of a SoS-wide audit trail. This occurrence is because each 
AuditCollector within each CollectedAuditSystem maintains an audit trail with the records 
confined to events detected within each component system. This result is a deliberate 
artifact of modeling systems as autonomous entities that are, by default, closed. However, 
X-UNrTY relies on explicitly declared shared variables to define system-to-system 
interactions at the SoS specification level. 

To overcome the violation so that SoS ASReplicas complies with PI, we add to 
Figure 10 a Governance section and introduce promote to make an exposed variable 
explicitly visible to other systems. This results in System CollectedAuditSystem-2 as 
shown in Figure 12. 

System CollectedAuditSystem-2 
include Program AuditableComponent 
include Program AuditCollector 
Components 

(D i :: AuditableComponent(i)) D AuditCollector 
Governance 

promote AuditCollector.auditTrail as notify in * 
end CollectedAuditSystem-2 

Figure 12: System CollectedAuditSystem-2 

The promote statement elevates visibility of specific exposed variables from the 
System level to the SoS level. Its use requires clear design intent. Here it is the 
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certification criteria represented by PI that guides the choice of the auditTrail variable to 
be renamed as notify in order to allow its reference by existing logic in peer systems. This 
guidance indicates the key influence that the security certification criteria have on model 
expression, development, and compliance verification. As seen in the earlier sections on 
the CPP, if the criteria cannot be expressed in the model, then there is no comparative 
verification that can be directly performed. The investigation into the X-UNITY 
extension goes further to indicate that the formal expression of security criteria actually 
guides the model change, if practical, once the non-compliance issue is identified. In this 
case, it is all peer systems as denoted by 'in *'. The peer systems are selectable under 
quantification by uses statements in the context programs of peer systems within the SoS. 

With this introduction of the Governance section and the promote statement, 
every AuditCollector component (Figure 9) can access the notifications from each 
AuditableComponent (Figure 8) within its respective system, as well as the top level audit 
trails of every other copy of CollectedAuditSystem-2 (Figure 12) within the SoS 
ASReplicas (Figure 11). As an alternative to this centralized approach, notify in each 
AuditableComponent could have been promoted. However, we choose a centralized 
design via the Governance section because it more closely follows the design approach 
of making system level interfaces explicit. Promoting auditTrail and renaming it to notify 
allows the system to be reused as a component in the hierarchy, while preserving PI over 
system quantification. 

Note that governance, or control, is either modeled explicitly within a special 
section of X-UNITY or implicitly through the cooperating code of multiple programs. By 
definition, it is rare to apply explicit governance to SoS models. Our Context UNITY 
extensions promote governance rules across the full spectrum of modeling unit 
granularities (programs, systems and systems-of-systems). For governance to occur 
explicitly, it must be implemented "outside" the modeling construct (e.g., within the 
environment) in question. For governance to occur in the SoS, each contributing system 
must accept some degree of outside control. This control can be in the form of various 
types of integration middleware that "glue" the systems together. The middleware itself is 
part of the SoS solution that can be modeled as (1) a subsystem in and of itself or (2) a 
"governance" function represented explicitly outside of the other SoS parts. 

Extending the audit example further, we introduce multiple systems that satisfy 
the requirements yet do so using different algorithms and system structures. These 
systems are composed into a larger SoS which may be examined to confirm or deny 
whether the SoS also satisfies the requirements at the global system level. 
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Program AuditConsumer 
declare 

exposed 
auditTrail: Set of AuditRecord 

context 
auditCache: Set of AuditRecord 

initially 
auditTrail := auditCache := 0 

assign 
auditTrail := auditTrail u auditCache : 
auditCache := 0 

context 
auditCache 

uses nlnotify in p 
given -i(n s; auditCache) 
where auditCache becomes auditCache u n 
0 impacts n 

end AuditConsumer 

Figure 13: Program AuditConsumer 

The program AuditConsumer (Figure 13) reproduces much of the logic of 
AuditCollector (Figure 9). It differs by 'consuming' the audit events once they are copied 
to the context variable auditCache. The variable notify remains the source of audit 
records in other components throughout the system. Now, notify is cleared by an impacts 
statement in the context program. This behavior is captured in Figure 14, 
ConsumedAuditSystem, that instantiates Auditable-Component (Figure 8) and the central 
AuditConsumer to gather the audit records for the entire system. 

System ConsumedAuditSystem 
include Program AuditableComponent 
include Program AuditConsumer 
Components 

(D i:: AuditableComponent(i)) 
D AuditConsumer 

Governance 
promote AuditConsumer.auditTrail as notify in * 

end ConsumedAuditSystem 

Figure 14: System ConsumedAuditSystem 

We specify the SoS ConsumeCollectHybrid (Figure 15) as an SoS of both 
collecting and consuming audit system types. One collects audit records while leaving 
their original variables undisturbed, while the other consumes such records and 
continually clears the source variables. Both report the results as exposed variables 
named auditTrail and promote these variables to peer visibility at the SoS level. 
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SoS ConsumeCollectHybrid 
include System CollectedAuditSystem-2 
include System ConsumedAuditSystem 
System Instances 

<D i : 1 < i < N :: CollectedAuditSystem-2(i)) 
D (0 j : 1 <j < M :: ConsumedAuditSystem(j)> 

end ConsumeCollectHybrid 

Figure 15: SoS ConsumeCollectHybrid 

Recall that SoS must satisfy requirements as if they were a single system while 
not violating properties in their component systems. While the top level audit trail created 
in the ConsumedAuditSystem (Figure 14) satisfies PI, the individual audit trails of its 
instances in Figure 15 are no longer valid. Their collection algorithm is interfered with by 
the consumer algorithm within AuditConsumer programs in ConsumedAuditSystem 
instances. When the auditTrail variables are promoted as notify, they too become subject 
to the impacts statements in the context rules of AuditConsumer programs and are set to 
empty sets. This violates PI for component systems of the SoS. Specifically, instances of 
CollectedAuditSystem-2 fail since they no longer have a system-wide audit trail after 
execution of the impacts statement. 

The investigation into expressing security certification criteria as progress 
properties that span the SoS shows two important details. The first is that certification 
criteria remain in need of a uniform framework for expression type (safety and progress) 
and designation (local to the component and global to the SoS). Our two models, the CPP 
and the X-UNITY language, are built on the same foundation of multi-component 
interaction and behavior expectations. However, one is better at functional representation 
and the other is better at policy object descriptions. A reconciling of the two along with a 
methodology for expressing the policies and criteria accurately and completely is still 
needed for a comprehensive framework. 

3. Exploring Access Control Policy Conflicts 
Access control policies are defined as a set of individual rules (functions 

providing privileges) applied to requests from subjects (users) to perform certain actions 
on a particular set of objects that require a particular access right [40J, [41]. Access is 
granted if the rule evaluation provides privileges for the access requested by the subject. 
Each component system has its individual access control policy described in terms of 
hierarchical, separation of duty (SoD), cardinality, and/or time assignments and 
constraints. The role hierarchy defines seniority among the roles, while SoD constraints 
restrict access to mutually exclusive operations. Cardinality constraints add numerical 
restrictions to allowable accesses to a system, and timing, or temporal, constraints define 
access over a given time interval. 

Vulnerabilities related to access control have been defined and organized into 
different categories that facilitate their detection and resolution [42]. We assume secure 
components have a domain in which there are no conflicts among their policies. Security 
vulnerabilities present themselves as policy conflicts or violations that occur due to inter- 
domain mappings,  the  access control  mappings  between  local component system 
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domains. Inter-domain access is more specific to the integrated systems where subjects 
from one component domain try to access objects from another component domain. Inter- 
domain mappings can also define further restrictions on inter-domain access such as user- 
role assignments, SoD, role hierarchy, cardinality, and time [43],[44],[45]. With the inter- 
domain mapping in place, it is possible for access to remain undecided from the 
integration and for new access decisions to disagree with locally defined policies. 

We introduce the Conflict Petri Net (ConPN) to analyze inter-domain access 
control mappings for SoSs and evaluate their potential to introduce violations to this 
specific authorization security policy and its internal details. These details are neither 
local component policy attributes or mechanisms (for representation in the CPP) nor 
function based for global compliance (for representation in X-UNITY). Instead, they are 
a third dimension of security certification because they are attached to a policy to govern 
internal processing that is not available at the exposed interface. Therefore, a different 
type of analysis is needed to indicate where policy violations may occur. 

We show formally how ConPN denotes inter-domain policy violations for Role- 
Based Access Control (RBAC) systems. Specifically, ConPN examines role inheritance. 
SoD, cardinality, and temporal policy constraints for compliance. We indicate the 
violations using their formal definition within ConPN. 

3.1 Role Based Access Control and Petri Nets 
Role-Based Access Control (RBAC) is commonly used to define access 

parameters within components and combinations thereof. This definition creates rule-sets 
of permissions, assigns the rules to roles, and then assigns roles to users [46]. The robust, 
low-maintenance, and efficient nature of RBAC systems allows for simple modeling of 
many constraints including hierarchical, SoD, cardinality, and temporal [47]. RBAC 
systems have noted limitations that should be addressed in integrated system security 
analysis [48], [43]. Because each user of a system takes on an assigned role, roles should 
be defined based on how the organization works. Inheritance may be ambiguous when it 
does not correspond to an organization's hierarchy [48]. Context is not included in role 
assignment constraints, which can be eased if traceable origins of inherited access are 
maintained across domains of the integrated system. 

A role hierarchy is a partial order relationship established among roles, through 
which access is granted. SoD constraints define mutually exclusive relations between two 
entities. Each individual is authorized or not authorized to have access based on the role 
he or she has been assigned, allowing a system to restrict access to authorized users and 
manage those permissions associated with groups of users easily by mapping users to 
roles. Other constraints can be used to restrict access to no more than a specified number 
of users (cardinality constraints) or to be granted during specific times (temporal 
constraints). 

We graphically represent RBAC systems using the convention where users and 
roles are nodes in the graph and the connections between them are directed edges, called 
mappings. The arrow connecting a user to a role represents assignment and the arrow 
connecting a role to a role represents a hierarchy. Figure 16 illustrates this concept. Role 
H inherits the permissions given to r2. Due to the temporal constraint on the mapping 
between n and r2, x\ only inherits from r2 on Monday, Tuesday, and Wednesday. Because 
r2 inherits privileges from r3, X\ also indirectly inherits permissions from r3. Role r3 does 
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not inherit from any other roles. User 1 is given all permissions defined for roles ri and r.i 
because of the user-role assignment to ri and the role hierarchy between ri and r^. The 
cardinality constraint on r3 indicates that only one user is allowed to have rj's privileges 
at a time. This means that if another user is assigned to any of the other roles, due to 
inheritance, this constraint would be violated. The mapping between roles r3 and u is 
considered an inter-domain mapping because it spans from one domain to another. 

Domain B 

Superior 
Permission Inheritance 

Figure 16. Role Hierarchy and Permission Inheritance 

Petri Nets describe systems at various levels of abstraction, and when combined 
with the ability to represent hierarchies, modeling complex systems becomes much easier 
[49]. Petri Nets are bipartite directed graphs, making it easy for modeling and formal 
verification. The theory behind Petri Nets allows flexibility to extend existing models 
once they conform to the basic Petri Net constraints. Moreover, they can capture both 
static and dynamic aspects of a system, which is not possible in other techniques like 
graph-based models. 

A Petri Net is a graph, GPN = (V, E), where the set, V, of vertices is comprised of 
places and transitions and E is the set of edges, or arcs between them. A place is never 
connected to another place directly, and transitions are never connected to another 
transition directly. Places are static entities. Transitions represent dynamic entities 
because the transition firing rules can change the contents of the tokens that flow through 
the Petri Net. A Petri Net is a 3-tuple: 

PN = (P, T, F) such that 
P: Set of places, P c V 
T: Set of transitions, TcV,PnT = 0 
F: Flow relation for arcs, F = (P x T) u (T x P), F Q E 

We define the following specific Petri Net entities 
• Input Arc: Flow f represents an input arc for transition tr when f = (p, tr) such that 

f e F, p e P, and tr e T because it flows from a place into a transition. 

• Output Arc:  Flow f represents an output arc for transition tr when f = (tr, p) such 
that f € F, p e P, and tr e T because it flows from a transition to a place. 

• Input Place:  p € P is an input place when it is connected to a transition tr e T 
through an input arc. 
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•    Output Place: pe P is an output place when it is connected to a transition tr € T 
through an output arc. 

There can be multiple input and output places for a given transition, which then 
forms a set of input places and a set of output places. In the most basic transition, tokens 
flow from all input places into all output places, even if the number of input and output 
places differs. Graphically, a place is represented by a circle; a transition by a rectangle 
or a bar; and an arc with an arrow (Figure 17). 

Transition 

Input Places 

I 
I 
I 

Output Places 
l 
i 

Input Arcs Output Arcs 

Figure 17. Basic Petri Net 
Token: A token is the entity that flows within an executing Petri Net, represented 
by small dots inside a place. 

Enabled Transition: A transition becomes enabled when all its input places have 
at least one token. 

Fired Transition: An enabled transition is fired (Figure 18) upon removing the 
tokens from the input place and placing them into the output places according to 
the firing rules. 

Figure 18. Transition Firing 

Executing a Petri Net is moving a set of tokens through the graph via transition 
firing rules. A Petri Net executes while it has enabled transitions that can be fired. This is 
known as a liveness property of a Petri Net. When a Petri Net reaches a state where no 
transition can be fired, it is known to be dead. Colored Petri Nets allow distinguishable 
tokens by assigning a particular color to a token [46]. They also introduce the concept of 
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arc-expressions, binding variables, and guards. These improvements dramatically 
increase the overall expressive power of Petri Nets by bringing them closer to 
programming languages. 

color set 
{red, green} 

constants: 
r.Q 

variables: 
X 

Figure 19. Colored Petri Net 

In Figure 19 we can see how a color set is defined. In our ConPN, we use this 
concept to place necessary information within tokens so that conflicts can be found. Here, 
place PI can hold red or green tokens. The arc between PI and Tl allows only green 
tokens and the arc between PI and T2 allows only red tokens. In this case, the token color 
represents a data type, and each place, transition, or arc can place requirements as to what 
color/type of token can exist on it. Place P2 does not put any restriction on what color the 
tokens need to be, and the variable X can be either red or green. The transition T3 has a 
guard expression and is known as a guard transition. Depending upon the guard 
evaluation, the transition will fire or not fire. This means that if X is red, then T3 will fire, 
putting the token into place P3. Similarly, arcs also can have arc expressions whose 
functionality is the same as guard expressions. 

3.3 Inheritance Policy Conflicts 
We define an inheritance policy as a 4-tuple, InheritancePolicy( U, R, SoD, M) 

such that 
U:        Finite set of Users 
R:        Finite set of Roles 
SoD:    Finite set of role based SoD requirements expressed as a triple (u, ri, r2) 

where ue (/ and {ri, r2} c R 
M:       Finite set of user-to-role and role-to-role mappings (or assignments) with 

cardinality constraints expressed as triples (u, i\, n) or (ri, ri, n) 
where u e U, {t\, T2} c /?, and n e K. 

A role in R can have a restricted cardinality or may allow infinitely many users in 
U to have access. A SoD requires at least two roles in R to indicate that the same user in 
U cannot be involved in both at the same time. If a mapping in M has a temporal 
constraint, then the inheritance of a role is restricted to a certain time interval as 
expressed by a natural number. If the is no temporal constraint, then n = 00. 

Let IPA and IPB be the inheritance policies of domains A and B, respectively, 
which may represent independent components. Let EPj0jn be the inter-domain mappings 
that tie the access policies together. 

Let IP = IPA u IPB U FPjoin be an inheritance policy. An inheritance conflict exists 
when a role inherits permissions it should not be allowed to have. This generally occurs 
with an incorrect role hierarchy between superior and inferior roles 

Conflicts of interest exist when entities (users or roles) should not be instantiated 
at the same time and are either directly or indirectly allowed to do so because of faulty 
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inter-domain mappings. Conflicts of interest are often forcibly prevented by including a 
SoD constraint on roles. If SoD lines are incorrectly mapped, when two domains are 
combined into one system, a role may be accessed by two conflicting users at the same 
time [50]. 

Cardinality and temporal constraints extend the conflict of interest constraints 
with time and assignment number restrictions. Cardinality constraints assign an upper 
limit to the number of users assigned to a role at one time. Temporal constraints assign 
certain time-periods for which a mapping is valid. A temporal conflict arises if a 
particular user can be assigned to a specific role that does not have equivalent temporal 
units. If this is the case, then either the user can access the role at a time that is not 
permitted or the role is incorrectly unavailable to the user. 

We have augmented an example initially published in [43] to demonstrate the 
conflicts defined above and how they are depicted in ConPN. Figure 20 depicts access 
control policies of Domain A, Domain B, and the inter-domain mapping between A and 
B. 

Domain A 

M. W, Th. F = weekdays 

U4 

UG 

Domain B 

Figure 20. Motivating Example 
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Thus, IP = IPA u IPB U IPjoin where 

IPA = (UA, RA, SODA, MA), such that 
UA = { ui,u2, u3}, 

RA = { TiA, T2A, T3A, ^A}, 

SoDA= {(ui,riA, r2A)}, 
MA = { (ui,riA,°°), (ui,r2A,°°), (u2,r2A,°°), (u3,r3A,°°), (riA,r4A,°°), (r4A,r3A,°°)} 

IPB = (UB, RB, SODB, MB), such that 
UB = {u4, U5 }, 
RB = {TIB, T2B }, 
SoDB = {}, 
MB = {(u4,riB,«>), (u5,r2B,°°), (riB,r2B,M-Th)} 

IPjoin = (Ujoin, Rjoin, SoDJoin, Mjom), such that 
Ujoin={}, 

Kjoin =   i /> 

SoDjoin= {}, 
Mj0in = {(riB,r2A,«>), (riA,riB,°°), (riB,r4A,F), (r2B,r4A,W-Th), (r3A,r2B,°°)} 

The inter-domain mapping, denoted by Mj0i„, induces all five types of conflicts to 
occur. We show how ConPN can detect the potential for these conflicts. Using a Petri Net 
allows us to separate concerns among conflict types and form our model atop a 
commonly accepted formal technique. This process is an improvement over manually 
scanning graphs or XML documents to find conflicts, such as in [43] where only conflict 
resolution is automated. 

Access control conflicts can allow the most unqualified user access to the most 
sensitive information if even one mapping is incorrectly specified. Depending on the 
sensitivity of the system, this could allow information leaks that affect a company's 
survival against competition or it could threaten national security by allowing attackers 
into sensitive government systems. The goal of ConPN is to guarantee that all policy 
conflicts are found, which is the only way to definitively say that a system's access 
control is secure. Thus, the approach will err on the side of false positives, rather than 
missing any potential conflict. Realizing the consequences of improper access, the 
operation of ConPN is designed to monitor a user's access path to indicate what roles a 
user has been given access to. This eases conflict resolution as it helps isolate where in 
the Inheritance Policy faulty mappings have occurred. 

3.5 Constructing the Conflict Petri Net 
We build upon the foundation of Colored Petri Nets to create the Conflict Petri 

Net, ConPN. ConPN requires extensions to the definitions of places, tokens, and arcs 
without interfering with the basic rules of execution and analysis of the Colored Petri 
Net. We formally define the transition rules that underlying the perspective-based, 
conflict detection mechanism. The structure of ConPN represents role-based access 
control policies easily and completely. 

ConPN is a graph, D = (P, A), where vertices are comprised of start places, role 
places, and choice places and edges are comprised of input and output arcs. Tokens show 
the policy in motion by flowing from place to place using transitions and firing rules to 
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traverse the arcs. ConPN retains meta-data based on token movement and the roles 
visited to determine if a state can be reached that indicates a policy violation. 

Places. A place is defined as follows: 
Place = (ID, CurrTk, TkLog) such that 

ID: Unique place identifier 
CurrTk: Current token set at place 
TkLog:   Bag of tokens that have visited the place, can be null 

The set of all places, P, in ConPN is partitioned into Normal and Choice places. 
Normal places are further partitioned into Start places (SP) and Role places (RP). The set 
of Choice places (CP) simulate the controlled access to certain roles for the specified user 
as dictated by SoD requirements. Choice places differ from start and role places because 
they embody these essential policy constraints. Thus, 

SP cz P A RP c P A CP c P A (SP n RP n CP = 0) 
All users have a 1:1 mapping with Start places in ConPN, signifying user access 

to the system. All roles in IP have a 1:1 mapping with Role places. SoD constraint triples 
have a 1:1 mapping with Choice places. For example, the inheritance policy represented 
by Figure 20 translates into five Start places with IDs {u\, U2, U3, 114, U5}, seven Role 
places with IDs {riA, TZA, KA, T4A, HE, ^B}, and one Choice place, {rsodi}. 

The cardinality of each place in P is determined by the function C: P-> K, which 
maps a place to a natural number indicating the maximum number of tokens allowed to 
flow to that place. If no cardinality restriction for some place p e P exists, then C(p) = °°. 
In our example, only one role, T^A, in Figure 20 has a cardinality restriction, such that 
C(r3A) = 2. 

Figure 21 shows the organization of the places in ConPN that correspond to the 
example in Figure 20. 

Tokens. In ConPN, tokens represent the execution semantics of the inheritance 
policy. Tokens facilitate snapshot and post execution analyses that identify inter-domain 
policy conflicts. Their values can be updated and evaluated throughout the ConPN 
execution. Similar to tokens in a Colored Petri Net, tokens in ConPN are distinguishable 
from one another. Let TK be the set of all possible tokens allowed in the ConPN. We 
define a Token as follows. 

Token = (Type, Origin, Time, RLog, ConflictID) such that 
Type: normal or choice 
Origin: Origin of this token, start or choice place 
Time: Temporal Unit, initially empty 
RLog: Bag of roles, initially empty 
ConflictID:      Set of place IDs 

There are two types of tokens, normal and choice. The origin of the token 
indicates where the token starts, i.e., a start or choice place. Every start place has exactly 
one normal token that originates there (recall the 1:1 mapping of user to start place). 
Every choice place has exactly one choice token that originates there (recall the 1:1 
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mapping of SoD requirements to choice places). Figure 21 shows the initial token 
placements for the example. The token time is the current temporal unit held by the token 
as seen in Table 5 and is initialized to the empty set. As normal tokens move through the 
ConPN, they collect the IDs of the roles visited in RLog. This is a bag because normal 
tokens can visit the same role multiple times and each visit is recorded. RLog is initially 
empty. Choice tokens work to model SoD conflicts. Since these token types are restricted 
in their movements, they use ConflictID to initialize the role places that cannot be jointly 
accessed. ConflictID is always empty for normal tokens. 

Since start places and choice places in ConPN are each initialized with a single 
independent token of the proper type. When a start or role place has multiple output arcs, 
it replicates its token for each output arc. An example of this is role HB in Figure 21 in 
which a token from ria or 114 will be replicated. In contrast, a choice place does not 
replicate tokens. 

Table 5: Initial Tokens and Places 

Tokens Places 
tk, =("normal",ui,0, 0, 0) U| 

tk2 = ("normal",u2,0, 0, 0) U2 

tk3 = ("normal",u3,0, 0, 0) U3 

tk4 = ("normal",u4,0, 0, 0) u4 

tk5 = ("normal",u5,0, 0, 0) u5 

tk6 =("choice",rsodi,0, 0, {TIA^A}) rsodi 

Transitions. As defined for the basic Petri Net, places are not directly connected 
to other places. Tokens must flow through a transition in the set T, from an input place to 
an output place according to transition firing rules. In ConPN, we extend the concept of a 
transition to include a function Temporal: T —> TU, which maps a transition to a set of 
temporal units from the power set of all such units, TU. These temporal units indicate the 
constraints on the time at which the transition's input place can pass a token to its output 
place. 

Each role assignment in the inheritance policy (visualized by a directional arrow 
in Figure 20) has a corresponding transition, directly mapping to 14 transitions. We add 
to the set those transitions supporting the Role SoD. For the each Role SoD triple in the 
inheritance policy (ui, TIA, ^A), we include a new transition to each choice place that 
branches to those transitions associated with the competing role assignments. Thus, from 
our example, we introduce transition tris between T\A and rsod|. The final set of ConPN 
transitions generated by the inheritance policy in Figure 20 is T= {tri, ..., tr^}. 

Arcs. Recall that an input arc connects a place in P to a transition in T and an 
output arc is directed from transition to place. Let Arc be the set of all arcs in the ConPN. 
To create the notion of SoD that disallows access to a role because access has been 
granted to a competing role, we provide each arc with a status by defining Status: Arc —> 
{"active", "blocked"} to indicate if an arc is valid to transition a token from one place to 
the next. 

Figure 21 shows the complete ConPN generated from the same inheritance policy 
as the example in Figure 20. 
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Domain A Domain B 

Figure 21. Example ConPN 

Transition Firing Rules. As the ConPN executes, a transition firing rule 
analyzes its places, tokens, and arcs to dictate the flow of the tokens throughout the net. 
Tokens can flow in parallel. We tailor the transition rules so that the movements of 
tokens through the ConPN imitate the access granted through IPA, rPB, and EPJoin. The 
transition firing rules reflect the Inheritance, SoD, Cardinality, and Temporal constraints. 

We use a precondition/postcondition format to express the transition firing rules. 
Notationally, ":=" is pseudo code for gets, "/*' represents set delete, and "0" represents 
bag union. Only changes to entities are detailed in the postconditions, whose statement 
order is meaningful. 

Transition firing rule TR1 moves a normal token (tk) from a normal or start input 
place (p\) to the transition's (tr) output place (p2) that may be of any type. Token and 
place meta-data (CurrTK, RLog, and TkLog) are updated. If the transition has defined 
temporal restrictions, the temporal units of the normal token (Time) take on the 
intersection of the time units associated with the transition as dictated by the security 
principle [40]. Arc status is unaffected by TR1. We formally define the conditions under 
which TR1 fires as follows. 

For tr e T;tke TK; arc\, arc2 e Arc; p\e SP u RP; p2 e P 

Preconditions: 
arc\ = (p\,tr) A arcz = (tr, p2) A Status(arci) = Status(arc2) = "active" 
tk e p\.CurrTk A tk.Type = "normal" 

Postconditions: 
pi.CurrTk :=p\.CurrTkl {tk} 
pi.CurrTk := p2.CurrTk 0 {tk} 
p2.TkLog :-p2.TkLog 0 {tk} 
tk.Time := tk.time n Temporal(fr) 
tLRLog := tk.RLog 0 {p2} 
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This transition firing rule, TR1, executes when there are active arcs connecting 
two places with a normal token being moved between them. The place (p\) containing the 
token is either a start place (SP) or a role place (RP). The place where the token moves 
(p2) can be any place within the ConPN. After the transition fires, the p\ deletes the token 
from its set of current tokens (p\.CurrTk). The token's time constraint (tk.Time) is 
updated to match the temporal units of the transition being fired. The token also updates 
its log of visited roles (tk.RLog) to include p2 and the token is added to p^'s set of current 
tokens (pi.CurrTk). Finally, the token log for p2 is updated to include the token 
(pi.TkLog). Figure 22 depicts the resulting changes in the ConPN when TR1 is applied to 
transition trg. 

status i 
active 

r18.CurrTk = (tk.) 

tr» 
tu = F 

tki.Type = normal 

Before TR1 applied to Transition tr9 

r«.CunTk = (tk.) 
status • 
active 

tkj.Time = F 
tlc.RLog = {U4, rtB. r«) 

tr. 
tu = F 

r,B.CunTk = {) 
status = 
active , 

r,B.TkLog = (tk4) 

After trg fires according to TR1 

Figure 22. Transition Firing Rule TR1 as Applied to Transition in. 

Transition firing rules TR2 and TR3 both rely on a choice place as their input 
place to enforce the restriction implicit in a role-based SoD requirement. TR2 dictates the 
firing of the transition to move a normal token (tk) to a chosen role (r) when it resides at 
the choice place (c) where a choice token (ctk) also resides. 

The choice token must be forced to move to the alternate role where it stays for 
the duration of the execution. The enforcement occurs because TR2 changes the state of 
output arc (arc\) that the normal token uses to "blocked." The choice token then has only 
one active arc to leave the choice place. TR3 dictates the firing of the choice token (ctk), 
relying on the firing of TR2 as indicated by the presence of a blocked arc (arc\). For a 
conflict to exist there must be a secondary path to the non-chosen role. Hence, if the same 
normal token arrives at the place where the choice token newly resides, then the SoD 
requirement is violated. 
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TR2 fires under the following conditions. 
For tr G T; tk, ctk e Token; arc\, ara e Arc; c e RSoD; r e RP 

Preconditions: 
arc] = (c,tr) A arc-i = (tr,r) A Status(arci) = Status(arc2) = "active" 
{tk, ctk) cz c.CurrTk 
tk.Type = "normal" A ctk.Type = "choice" A ctk.Origin = c 

Postconditions: 
c.CurrTk := c.CurrTk I {tk} 
status(arci) := "blocked" 
r.CurrTk := r.CurrTk 0 {tk} 
r.TkLog := r.TkLog 0 {tk} 
tk. Time : tk. Time ATemporal(fr) 
tLRLog := tk.RLog 0 {r} 

Transition Firing Rule TR2 applies when there are two active arcs {arc\, arci) 
connecting a choice place (c) to a role place (r), where the choice place contains both a 
normal token (tk) and a choice token (ctk). The choice token originates (ctk.Origin) at the 
choice place where it is residing. After TR2 fires, the choice place removes the normal 
token (tk) from its set of current tokens (c.CurrTk). The token adopts the temporal 
constraints of the transition (tLTime), the token's log of visited roles (tLRLog) now 
includes the role place (r), and the token is added to the role place's set of current tokens 
(r.CurrTk) and its log of tokens (r.TkLog). This rule additionally sets the status of the arc 
between the choice place and the transition (arc\) as blocked. The choice token's 
existence is necessary to determining if TR2 is enabled, but the choice token is moved 
separately using TR3, described next. TR3 fires under the following conditions. 

For tr\, trj e T; ctk € Token; arc\, arc2, arcj e Arc; c e CP; r e RP 

Preconditions: 
arc\ = (c, tr\) A arc-i = (c, tri) A arc-i = (^"2. r) 
Status(arci) = "blocked" 
Status(arc2) = Status(arc3) = "active" 
ctk e c.CurrTk A ctLType = "choice" A ctk.Origin = c 

Postconditions: 
c.CurrTk := c.CurrTk I {ctk} 
ctk.ConflictID := ctLConflictlDI {r} 
r.CurrTk :- r.CurrTk 0 {ctk} 
r.TkLog : = r.TkLog 0 {ctk} 

The choice token is moved by TR3, which by definition can only be applied after 
TR2 is fired. This is because of the precondition that an output arc (arc\) from the choice 
place (c) is blocked. The choice token (ctk) must both originate from and currently reside 
in the choice place. Once TR3 fires, the choice token is removed from the choice place 
(c.CurrTk) and the set of conflicting id's (ctk.ConflictID) is changed to omit the role 
place (r) where the choice token now resides. Only the alternate role is left in the 
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ConflictID set. There are no transition firing rules to move the choice token. Thus, if a 
normal token joins this choice token and the normal token has visited the role in the 
choice token's ConflictID set, then the SoD requirement has been violated because the 
normal token has visited both roles places and should not have been able to. The role 
place (r) then adds the choice token to its set of current tokens (r.CurrTk) and its token 
log {r.TkLog). 

Since choice tokens are not transitioned further by any firing rules and are not 
included in inheritance, cardinality, or temporal conflict assessment, no further 
postcondition changes are warranted than those presented above. It is important to note 
that the finding of a single conflict denotes a problem with this SoD constraint. 
Therefore, it is not important to the conflict detection that the arc blocks further flow 
from the RSoD place to the chosen role. 

Figure 23 illustrates these transition firing rules on the ConPN example shown in 
Figure 21. 

rcodi.CurrT* - (Ik,, tk,) 
tk7.Type = 'choice' 
tk7.0 = nodi 
tk,.Type 

Before TR2 applied to Transition fri 
and TR3 applied to Transition tr2 

rjA.CurrTk = (tki) 
r».Tklog = (tk,) 

tk,.RLofl = {ui. rwdi. r?A) 

rsodi.CurrTk = {} 
rsod.JkLog = {tk, tk7} 

r1A.CurrTk = (tk7) 
r,«.TW_og • (tk,) 
tk7.RLog • {rsodi, rw) 
tk7.ConflctlO = (fa*) 

After tri fires according to TR2 and 
tr2 fires according to TR3 

Figure 23. Transition Firing Rules TR2 and TR3 

These transition firing rules provide the means to detect conflicts in the ConPN. 
By moving tokens through the Petri net, different states of the system are found. The 
ConPN executes in a step-wise fashion where enabled transitions are fired until a 
quiescent state is reached. This organized evaluation is easily automated using ConPN- 
specific software [12]. The next section shows how inheritance policy violations are 
found from the ConPN execution. 

3.6 Finding Conflicts with ConPN 
The ConPN can detect inheritance, role-based SoD, cardinality, and temporal 

compliance violations when representing an inheritance policy, IP. We discuss these 
findings below. 

Inheritance Conflict. If a token visits the same role multiple times, it means that 
a role in IP can be visited by a cyclical firing of transitions in the ConPN. This state is 
evident in the RLog of each token that retains the roles visited by the token. Thus, the 
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cycle is visible if any place, other than a choice place, appears in the RLog of a normal 
token more than once. Formally, 

3 tke Token; re SPu RPsuch that tk.RLog\i) > 1 <=> InheritanceConflict(r) 

We use a formal definition of the bag, RLog, as a function from places to the set 
of natural numbers indicating the number of times a role appears in the bag. Thus, 
tk.RLog(r) returns the number of times r appears in tk.RLog. 

Figure 24 shows a potential inheritance conflict in the ConPN using the example 
from Figure 21. Since tk^RLogir^A) > 1, it is clear that a violation exists. This violation 
occurs because in rPj0in {(r2B,r4A,W-Th), (^A^B,

00
)} C Mjoin. This mapping translates into 

an execution of the ConPN in which the normal token, tk3, inside role r3A is shown as 
having progressed through the sequence of transitions <tr6, ten, trio, u-3) to progress from 
U3 to T3A, T3A to r2B, T2B to T4A, and back to T3A. As shown in bold text in Figure 24, the 
tk3.RLog contains role r3A twice indicating an inheritance conflict. Because r3A is both 
superior and inferior to r4A, the RBAC system cannot determine which role is genuinely 
superior. 

Domain B 

Figure 24. Inheritance Conflict 

SoD Conflict. A potential role-based SoD conflict is detected if a normal token 
visits a role place that holds a choice token under the following conditions. 

• The choice token is not at its place of origin. 

• The choice token holds in its ConflictlD set a role that the normal token has 
visited. 

This indicates that the choice token was unable to protect the use of the role, 
where it currently resides, from being accessed by a token that has already accessed the 
competing role governed by the RSoD constraint. This is formalized as follows. 

3tk, ctke Token; r\, r2 e RP such that 
tk.type = "normal" A ctk.type = "choice" A 

[tk, ctk} cz r\.CurrTk A ctk.Origin ^ r\ A 

T2 e tk.RLog A r-i € ctk.ConflictlD 
<=> RSoDConflict(n) 
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For role-based SoD transitions, the transition firing rules TR2 and TR3 are the 
only ones enabled. Each role-based SoD place holds a choice token, where its set of 
conflicting IDs (ConflictID) is initialized with the competing roles. Upon the first normal 
token's path being taken from a SoD place, TR2 is performed. The normal token moves 
to the next place and the arc it took becomes blocked. TR3 becomes enabled in this state. 
When TR3 fires, it sends the residing choice token down the alternate path from the 
normal token. Choice tokens will never be moved from a role place since no transition 
firing rules exist to move them out of a role place. 

Figure 25 shows the role-based SoD conflict in the example. The lightly shaded 
role places (riB, riA) indicate the path of the normal token. The more darkly shaded place 
(r2A) indicates the conflict where the two tokens arrive at the same place. User ui initially 
contains the normal token tki. The choice place, rsodi, initially contains the choice token 
tk6- When these tokens are both contained in rsodi, they are moved according to rules 
TR2 and TR3. Assume the case in which tki moves through tr2 to riA. By TR3, tk$ is 
moved to T2A through tti. The ConflictID set of tk6 becomes {r)A}. As tki moves through 
the ConPN, it is able to access r2A. A violation occurs because its RLog contains riA. 
Thus, user ui can be assigned roles nA and r2A simultaneously, bypassing the Role SoD 
constraint between roles nA and r2A. 

tke=Cchoice", rsodi,0, 0. {ri*, 'IA)) 

tk, =("normal", Ui,0, 0, 0) 

tk, =f normal". Ui, 0, {Ui, rsodi, '\n, he. '2*}, 0)      | 
tk6=("choice", rsod,. 0. 0, {rtA}) I 

trj riA 

Domain A Domain B 

Figure 25. Role-Based SoD Conflict 

Cardinality Conflict. A potential cardinality conflict is present in the ConPN 
when more tokens visit a role place than its cardinality allows. Cardinality conflicts are 
formally defined as follows, with the symbol '#' meaning 'size of. 

3r e RP such that C(r) < #r.Tkl_og ^> CardinalityConflict(r) 

Figure 26 shows the cardinality conflict in the ConPN where tokens ti, t3, and u 
have reached role place r3A. According to IPA, ui and U3 can legitimately access T3A. 
Given that (riB,r4A,F) e Mj0in, user U4 can also access role r3A leading to cardinality 
conflict as the number of tokens reaching role place r3A exceeds the cardinality limit. 
Though, not shown in Figure 26, U5 can also access T3A. 
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Domain A Domain B 

Figure 26. Cardinality Conflict 

Temporal Conflict. A potential temporal conflict is present if tokens originating 
from the same start place can reach the same role place via distinct paths and end up with 
unequal temporal units. The inequality means that the role has been over or under 
restricted due to the inter-domain mappings. Both cases are considered improper access. 
Formally, a potential temporal conflict exists when 

3tki, tk2 G Token; r\ e SP; ri e RP such that 
(tki.Origin = r\ A tic .Origin = r{) A 

ri e tk/.RLog A r-i e tki.RLog A tk/.RLog * tk2.RLog) A 

(tki.Time * tki-Time) 
<=> TemporalConflict(/;, ri) 

The temporal unit of an inter-domain mapping is the smallest unit granularity on 
which temporal constraints are defined, for example days or hours. Temporal constraints 
are dictated by a transition when the token's Time is assigned the value of the Temporal 
function for the transition. Figure 27 illustrates how the ConPN identifies this conflict 
type. User U4 has access to r4A via two paths: U4 -> TIB "^ UA and 114 -^ HB -> r2B "> r4A. 
Note that HB replicates token tkt to create tk*. Transitions trg and trio have different 
temporal units, which cause confusion as to when U4 should be allowed r4A's permissions. 
Because the two temporal units are different, improper access can occur. This state 
occurs even each transition reassigns the temporal units to the intersection of the existing 
Time value and the transition's time constraint. 

Domain A Domain B 

Figure 27. Temporal Conflict 

Each component in a SoS has its own access control domain. Certain interactions 
among the software components within a SoS imply the need to configure an inter- 
domain mappings of access privileges. These mappings require formal, scalable scrutiny 
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to uncover potential violations of confidentiality and availability within a single 
component. ConPN offers a solution to some of the intricate analysis to discover potential 
violations. 

4. Conclusion 
The difficult integration process of composing a set of independent software 

components can introduce unexpected security vulnerabilities in a SoS, making security 
certification difficult. We have found that multiple dimensions of policy expression are 
needed to detect and mitigate vulnerabilities. In this report, we highlight three dimensions 
and their policy representations, analyses, and verification strategies. 
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